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Photoinduced hydrophosphinylation of alkenes with diphenylphosphine oxide took place regioselec-
tively affording the corresponding phosphine oxide in good yields. This hydrophosphinylation is of sim-
ple operation and widely tolerant to a variety of the functionalities.
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Because of the wide applications of organophosphorus com-
pounds1 in coordination chemistry, agrochemicals, and polymer
science, the development of highly selective and environment-
friendly synthetic methods of phosphorus compounds has been
of current interest. In this Letter, we wish to report a solvent-free,
atom-economical, and highly efficient synthesis of organophos-
phorus compounds by the photoinduced hydrophosphinylation of
alkenes with diphenylphosphine oxide. Thus, for example, the
hydrophosphinylation of 1-octene with Ph2P(O)H can be con-
ducted at room temperature upon irradiating a mixture of 1-octene
and Ph2P(O)H with a xenon lamp through Pyrex (Eq. 1):
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The addition of P(X)–H bonds (X = lone pair, O, or S) to carbon–
carbon unsaturated bonds is one of the most straightforward
methods for the synthesis of organophosphorus compounds. This
hydrophosphinylation is known as ‘Pudovik reaction’.2 The Pudo-
vik reaction can proceed via a radical and/or ionic mechanism. In
the cases of carbon–carbon unsaturated compounds activated by
an electron-withdrawing group, the reaction proceeds via ionic
mechanism.3 When inactive olefins and organophosphorus com-
pounds such as R2P(O)–H are employed, this addition prefers a rad-
ical pathway.2b Recently, the hydrophosphinylations of alkenes
with R2P(O)–H using radical initiator4–6 or microwave7 were re-
ported. Photoirradiation8,9 is thought to be one of the simplest
methods; however, such a photoinduced hydrophosphinylation
of alkenes with diphenylphosphine oxide has not been investi-
gated in detail.10,5b
ll rights reserved.

gawa).
When a mixture of 1-octene (1.0 mmol) and diphenylphosphine
oxide (0.2 mmol) in a sealed NMR tube (u = 4 mm, Pyrex) under N2

atmosphere was irradiated with a xenon lamp at room tempera-
ture, a regioselective hydrophosphinylation took place to give
diphenyloctylphosphine oxide (1a) in excellent yield (Table 1, en-
try 1).11 This reaction also proceeded efficiently in a larger scale
(entry 2). The hydrophosphinylation did not take place without
photoirradiation (entry 3). When the hydrophosphinylation reac-
tions were performed using various olefins bearing chloro, cyano,
hydroxyl, phenyl, phenoxy, or amino groups, the corresponding
products 1b–g were obtained in good to excellent yields without
affecting these functional groups (entries 4–9). Moreover, internal
alkenes were also found to be good substrates for the reaction (en-
tries 10 and 11). 3,4-Dihydro-2H-pyrane reacted with diphenyl-
phosphine oxide regioselectively affording the corresponding
hydrophosphinylation product 1i. The hydrophosphinylation also
took place successfully even with a bulky vinyltrimethylsilane (en-
try 12).

A similar hydrophosphinylation, however, proceeded slowly in
solvents such as THF, benzene, chloroform, and ethanol, affording
the adducts in low yields. Interestingly, we found that the addition
of pyridine to the mixture can accelerate the reaction (Table 2).
Thus, when a mixture of 1-octene (0.1 mmol), diphenyphosphine
oxide (0.3 mmol), and pyridine (0.3 mmol) in chloroform-d
(0.6 mL) was irradiated, 1a was obtained in 91% yield (entry 1).
Noted that the yield of 1f and 1j from allyl phenyl ether and
vinylsilane, respectively, were dramatically improved compared
to those in the absence of pyridine (entries 2 and 4).

To clarify the reaction mechanism, a mixture of 1,6-heptadiene
and diphenylphosphine oxide was irradiated under solvent-free
condition (condition A) or in CDCl3 in the presence of pyridine as
an additive (condition B) (Scheme 1). Under both conditions, the
reaction proceeded via cyclization, affording the five-membered
ring compound5a in good yields. These result indicates that this
hydrophosphinylation in the presence or absence of pyridine pro-
ceeds via a radical mechanism.



Table 1
Photoinduced hydrophosphinylation of alkenes with Ph2P(O)H
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R
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+

1
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h

0.2 mmol1.0 mmol

ν

Entry Alkene Time (h) Product Yielda (%)

1 nC6H13 18
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4 Cl 16
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O 1g18 57 (81)
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11

O
45

O
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1i20 99

12 TMS 27
TMS
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O
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1j21 48 (58)

a Isolated yield (1H NMR yield).
b Reactions were performed using alkene 7.0 mmol, Ph2P(O)H 1.4 mmol.
c Without photoirradiation.

Table 2
Photoinduced hydrophosphinylation of alkenes with Ph2P(O)H in the presence of
pyridine

R Ph2P(O)H
R
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O
+
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r.t., CDCl3

h

pyridine 0.3 mmol0.1 mmol 0.3 mmol

ν

Entry Alkene Time (h) Product Yielda (%)
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4 TMS 12
TMS
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O

TMS
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O
1j (74)

a Isolated yield (1H NMR yield).
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Scheme 1. Condition A: 1,6-heptadiene (0.1 mmol), Ph2P(O)H (0.2 mmol), C6D6

(0.6 mL); B: 1,6-heptadiene (0.1 mmol), Ph2P(O)H (0.3 mmol), pyridine (0.3 mmol),
CDCl3 (0.6 mL).
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A possible pathway for this hydrophosphinylation is shown in
Scheme 2. Upon photoirradiation, diphenylphosphine oxide gener-
ates a phosphinoyl radical. A phosphinoyl radical selectively attacks
the terminal carbon of an alkene, affording the corresponding radical
intermediate (A). This intermediate (A) abstracts a hydrogen of
diphenylphosphine oxide, affording the hydrophosphinylation
product with generation of another phosphinoyl radical.

In summary, we have developed a photoinduced hydrophosph-
inylation of alkenes with diphenylphosphine oxide, which is
widely tolerant to a variety of functionalities, giving high yields
of the corresponding adducts regioselectively.
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Scheme 2. A possible pathway of photoinduced hydrophosphinylation.
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